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In  a recent paper (Evans 1976) a theory was presented for the behaviour of an 
oscillating two-dimensional cylinder of any shape which was capable of absorbing 
energy from a given regular sinusoidal wave. In  particular an expression was derived 
for the efficiency of power absorption of the cylinder when oscillating in a single mode 
in terms of properties of the solution of the so-called radiation problem in which the 
cylinder isforced to oscillate in the appropriate mode in the absence of the incident 
wave train. 

In  the present paper this theory is extended to two independent cylinders of 
arbitrary shape each oscillating in a single mode and capable of absorbing energy 
in that mode. A general expression for the efficiency is derived which depends on 
properties of the solution to a new radiation problem, in which one cylinder is 
forced to oscillate in the presence of the other cylinder, which is held fixed in its 
equilibrium position. In  this case, the efficiency also depends on cross-coupling 
coefficients related to the force on the fixed cylinder due to the motion of the oscillating 
cylinder. 

It is shown that the cylinders can be tuned to absorb all the incident wave energy at  
a given frequency even for symmetric cylinders, in contrast to the single symmetric 
cylinder, for which the maximum efficiency has been shown to be 50 Oi0. 

The general solution to the new radiation problem is derived in terms of the solution 
to the radiation problem for a single cylinder, by assuming that the cylinders are far 
enough apart for local wave effects to be negligible. 

The special case of two widely spaced rolling vertical plates is considered in detail 
and curves showing the variation of efficiency with wavelength are given for a variety 
of plate spacings and points of rotation. 

1. Introduction 
There is considerable interest a t  present in devising methods for extracting energy 

from ocean waves and a number of research groups are actively developing their own 
particular device (see, for example, Kenward 1976). In  parallel with this experimental 
work a number of theoretical papers on wave energy have appeared. Thus Evans 
(1976) derived a general theory for the efficiency of wave absorption of a long cylinder 
of arbitrary cross-section oscillating in a single mode such as heave, surge or roll, or, 
in some cases, in a combination of two modes. Evans also derived results for the 
efficiency of a single three-dimensional body with a vertical axis of symmetry oscil- 
lating in one or more modes. In  each case the expression for the efficiency required 
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knowledge of the added mass and damping coefficients for the body or cylinder as 
functions of wave frequency and also the amplitude of the waves a t  large distances 
from the cylinder due to forced motion of the cylinder in the wave-absorbing mode. 
Some of the results derived in Evans (1976) were also obtained simultaneously by 
Mei (1976) and Newman (1976). 

Count (1 978) generalized Evans’ results to include an arbitrary cylinder oscillating 
in more than one mode and an articulated cylinder, in order to model the behaviour of 
the Salter ‘ duck ’ device and its backbone and also the Cockerel1 contouring rafts device. 
Budal, in a series of papers (Budal & Falnes 1975a, b ,  c; Budal 1977), has concentrated 
on predicting the maximum absorption capability of various configurations of three- 
dimensional devices. Recently Standing (1 978) has developed a computer program 
capable of determining hydrodynamic coefficients for a wide class of two- and three- 
dimensional problems and has applied it to predicting the performance of both the 
Salter duck and the NEL oscillating water column device in three-dimensional regular 
waves. 

One of the most important conclusions reached by Evans (1976), Mei (1976) and 
Newman (1976) was that a cylinder which is capable of absorbing energy in two or 
more distinct modes of oscillation can absorb all the energy in a given incident wave of 
small amplitude. This result forms the basis for the submerged circular cylinder wave- 
energy device and has been confirmed experimentally (Evans et al. 1979). 

In the present work we consider the problem of two arbitrary cylinders oscillating 
independently and capable of absorbing energy in a single mode from a given incident 
wave. There is no difficulty in principle in generalizing to any number of cylinders 
oscillating in two or three modes but in practice the analysis becomes unwieldy. 

The problem is formulated in 3 2 in terms of the linearized equations of motion and 
boundary conditions. It is shown how the general problem can be regarded as the 
superposition of the solution to the scattering problem in which the cylinders are held 
fixed in the incident wave, and the solution to the radiation problem in which each 
cylinder makes forced oscillations in turn, the other cylinder being held fixed, in the 
absence of the incident wave. 

In  $ 3  it  is shown, by considering the wave field far from the cylinders, that the 
maximum efficiency of wave-energy absorption is 100 % and the required displace- 
ments of the cylinders for this to occur are determined. 

The equations of motion of the cylinders are derived in $ 4  under the assumption that 
each cylinder can absorb energy through a simple linear spring-damper system, each 
damper absorbing a net amount of energy over a period. An alternative expression for 
the efficiency to that derived in $ 3  is obtained by considering the net work being done 
on the cylinders. The displacements of the cylinders for maximum efficiency are then 
used to determine the values of the spring and damper constants which ensure that all 
the energy is absorbed from an incident wave of a given frequency. The system is then 
said to be ‘tuned’ to that frequency. A verification that, with these values of the 
spring and damper constants, the dampers do indeed absorb all the energy in the 
incident wave a t  the tuning frequency is given in appendix B. 

In § 5 an approximate method is presented for solving the radiation and scattering 
problems for two arbitrary cylinders in terms of the solution of those problems for a 
single cylinder. The method, first used by Ohkusu (1974), is based on the assumption 
that the cylinders are spaced far enough apart for the local wave field in the vicinity of 
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one cylinder not to influence the other cylinder. The only interaction between the 
cylinders is due to the propagating-wave terms which occur in the radiation and 
scattering problems for single cylinders. Mathematically, the approximation is equi- 
valent to the assumption that the wavelength is small compared with the distance 
between the cylinders but it has been shown by Ohkusu (1974) that the method is 
valid over a much wider range of the ratio of wavelength to cylinder spacing. Expres- 
sions are derived for generalized added-mass and damping coefficients for two cylinders, 
being the forces on each cylinder due to the motion of one cylinder in a given mode, the 
other being held fixed. Also given are the wave amplitudes at large distances from the 
cylinders, and the reflexion and transmission coefficients when both cylinders are held 
fixed in a given incident wave. In  each case the expressions depend on the solution 
to the corresponding problem for a single cylinder. 

The special case of two vertical thin barriers is considered in §$6 and 7. This enables 
known explicit results derived by Ursell(1947, 1948) for a single barrier to be used and 
these are presented in 4 6. 

In 7 the results for the hydrodynamic coefficients for two vertical thin barriers are 
presented and discussed. A check on the widely spaced approximation to the reflexion 
coefficient is made by comparison with more a :curate results for that problem obtained 
by Evans & Morris (1972). It is shown that the approximation is valid even when the 
wavelength is larger than the barrier spacing, suggesting that the method can provide 
good results for the other hydrodynamic coefficients where no check is available. 

Curves showing the variation of efficiency of wave-energy absorption with wave 
frequency for different barrier spacings and points of rotation are also presented and 
discussed in 3 7. 

New relations between the various hydrodynamic coefficients for a system of 
independent two-dimensional cylinders are given in appendix A. These generalize 
results such as the Haskind & Newman relations for a single cylinder (Newman 1976). 

2. Formulation 
We consider the motion of two cylinders of arbitrary cross-section, situated either 

on or beneath the free surface, each moving independently in one mode and capable of 
extracting power in that mode from the incident wave. We assume that the cylinders 
are long, with horizontal generators, and that the fluid motion is purely two-dimen- 
sional, being confined to planes normal to the cylinder generators. Here the generators 
of one cylinder are parallel to those of the other. 

Cartesian co-ordinates (x, y )  are chosen such that y = 0 is the undisturbed free 
surface, with y vertically upwards and x to the right. Vnder the usual assumptions of 
linearized water wave theory a velocity potential @(x, y, t )  exists which satisfies 

V2@ = 0 in the fluid, (2.1) 

82@/8t2+g8@/dy = 0 on y = 0. (2.2) 

It is assumed that a small amplitude sinusoidal wave train of frequency w is incident 
from x = + 00 upon the cylinders, and that the generators of the cylinders are parallel 
to the wave crests. Each cylinder is constrained to make small amplitude oscillations 
in response to the incident wave, in one mode only (either sway, heave or roll but not 
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a combination of these). In  the absence of waves it is assumed that each cylinder is held 
in equilibrium by a combination of buoyancy forces and a spring-and-damper system 
connected to each cylinder. This system is capable of extracting power and it will be 
assumed that the power take-off mechanism is described by a single linear damper (for 
each cylinder) with a resistance to motion which is proportional to velocity. 

On each cylinder we impose the condition that the component of cylinder velocity 
normal to the cylinder is equal to the normal velocity of the fluid at that point. Let 
&(t) describe the displacement of the ith cylinder (i = 1,2)  from its equilibrium 
position. Here j = 1 relates to sway motions, j = 2 to heave motions and j = 3 to roll 
motions. The linearized conditions on the equilibrium positions of the cylinders are 
then 

a@/ani = &nij (i = 1,2;  j = 1,2 ,3)  

for (x, y) on Si, the wetted surface of the ith cylinder, where n, = (nil, ni2) is the normal 
from the ith cylinder into the fluid at  the point (x, y) and ni3 = niz(x - a,) + nil(y -pi), 
where (ai, pi) is the point of rotation of the ith body. 

It is convenient to eliminate the assumed harmonic time dependence by writing 

@(x,y,t)  = Re($(x,y)ei"t}, (2.4) 

where w is the radian frequency. 
Now the complex-valued time-independent potential $(x, y)  may be written 

and A is a complex constant. Here the complex potential $s is the solution of the 
scattering problem in which both cylinders are held fixed in an incident wave from 
x = + oc of unit amplitude potential. The complex potential is the solution of the 
radiation problem in which a normal velocity Re (nlj eiwt) corresponding to small 
oscillations of unit amplitude in the j t h  mode ( j  = 1 ,2  or 3) is prescribed on the first 
cylinder and the second cylinder is held fixed. Similarly $2k describes small oscillations 
of unit amplitude of the second cylinder in the kth mode (k = 1,2 ,3)  with the first 
cylinder held fixed. 

Then (2.3) is satisfied since 

a$Jan, = 0, a$,$/an, = nPjaip on S, ( i ,p  = 1,2; j = 1,2,3) ,  (2.7) 

where 
0 if i +p, 

1 if i = f p .  
sip = 

- 
The wave elevation is given by 

g- .1 a@(x, 0, t ) /at  = Re (iwg- $(x, 0) eiwt}, 

so that the incident wave has amplitude A if we assume 

eiKx + R e-iKx) eK" as x -+ + 03, (2.8) 

as x -f -03, (2.9) 
$ s -  {( T etKxfKu 

where Rand T are the complex reflexion and transmission coefficients for the scattering 
problem. Here K = w2/g.  For $ij we assume the following behaviour as x -+ & 03: 

$ij N A&eTiKx+Kv as x -+ m. (2.10) 
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It is possible, by using Green's theorem, to derive relations between the various 
quantities associated with the scattering and radiation problems and these are derived 
in appendix A. The relations are generalizations of the Haskind, Newman and other 
relations (see Newman 1976) to the case of more than one body. In  the following 
sections these results are used to consider the efficiency of power extraction by two 
independently oscillating cylinders. 

3. The maximum efficiency of power absorption 
The efficiency of the system will be defined as the proportion of the available power 

per unit frontage of the incident wave which is extracted by the two cylinders. This will 
clearly depend on the details of the coupling between the cylinders and the fluid. 
However, it  is possible to obtain some information about the maximum efficiency 
without knowing the details of the coupling. 

From ( 2 . 5 )  and (2.8)-(2.10) we obtain 

w-lgA) (eiKX+ R, e-iKz) eKy as x --f + 00, (3.1) 

as x - f - c o ,  (3.2) 

where R, = R + iKA-l(c,jA$ + <2kA2+k), (3.3) 

W-lgA) T, eiKx+Ky 

Following Evans (1976), the efficiency E of the system is just 

E = l - R l ~ l - T l ~ l  (3.5) 

(here an overbar denotes a complex conjugate). As R,Rl, T, F, > 0, it  is clear from 
(3.5) that the maximum value of E will be 1, when R, = T, = 0. To find when this is 
attained we set R, = T, = 0 in (3.3) and (3.4), and then solve for glj and Czk. If we 
now use equations (A 7) and (A 8) from appendix A to replace R and T by expressions 
involving A&, we obtain after some manipulation 

as the conditions for complete absorption. With these values of Eli and ,& we have 
Em,, = 1, so that all the energy in the incident wave is absorbed. 

This result could have been anticipated by the following argument. Suppose that 
two cylinders are symmetrically positioned with respect to the line x = 0. If both 
cylinders make identical heave oscillations in phase, the waves radiated to x = rf: co 
will have the same amplitude and phase. If the cylinders heave exactly out of phase 
the waves radiated to x = f co will have the same amplitude but opposite phase. It 
follows that there exists a linear combination of these two heave motions which will 
cancel the waves at, say, x = - co while doubling the wave amplitude at x = + co. By 
reversing the time co-ordinate, we see that there exists a heave motion of the two 
cylinders which completely absorbs a given incident wave from x = +a. The same 
argument applies to roll and sway motions. Notice that the above argument also holds 
if each cylinder is symmetric about a vertical axis through its equilibrium position. 
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Now it has been shown (Evans 1976) that a single such cylinder can absorb a maximum 
of 50 yo of the incident wave energy, 25 % being reflected and 25 % transmitted. It 
could be argued that a second symmetric cylinder can absorb at  most 50 yo of what is 
transmitted past the first cylinder, 25 yo being reflected back to the first cylinder, 
which in turn absorbs 50 % of this energy and so on. This leads to a maximum of Q of 
the incident energy being absorbed with reflected and & transmitted. This argu- 
ment is unsound not least because no allowance for favourable phase cancellation has 
been made, and as we have seen, 100 yo absorption is in fact possible. 

It is of interest to note that, if we drop the subscripts 1 and 2 and consider this 
formulation as representing the motion of one cylinder in two distinct modes, we have 
also shown that any cylinder moving in two distinct modes can extract all the energy in 
an incident wave (Evans 1976). In  fact by suitably altering the notation all the results 
of $5  2-4 and appendices A and B can be shown to apply to one cylinder in two modes. 

4. The equations of motion of the two cylinders 
We now consider in detail the motion of the two cylinders. We shall assume that each 

cylinder’s motion is resisted by mechanical forces which can be modelled by a simple 
spring-and-damper system. Thus c i j ( t )  satisfies 

mit i ,  = - d i & , - k i c i j + K j  (i = 1 , 2 ;  j = 1,2,3) ,  (4.1) 

where di and ki are the damper and spring constants and mi the mass (or moment of 
inertia, i f j  = 3) of the ith cylinder. For heave and roll motion ( j  = 2,3) ,  k, may also 
include a buoyancy force. The terms diCij (i = 1,2) allow a net amount of work to be 
done on the cylinders over a period, provided di + 0 for either i = 1 or i = 2. The term 
K j  is the total hydrodynamic ‘force’ on the ith cylinder. For j = 1 , 2  the force is 
horizontal and vertical respectively; c3 is the moment about the point of rotation. 

The total hydrodynamic forces can be conveniently separated into two parts. We 
write 

where F& is the force acting on the ith cylinder in thejth direction when both cylinders 
are assumed to be held fixed in the presence of the incident wave. Pij is the force on the 
ith cylinder in the j t h  direction due to its own motion and the motion of the other 
cylinder in the absence of the incident wave. From (A 16) we obtain 

( 4 4  Fij = F&+F$j (i = 1,2; j = 1,2 ,3) ,  

F;j = - ~ l j ~ j ~ ~ j - B l j l ~ ~ l j - M l j 2 k ~ 2 k - B l j Z k ~ 2 k  (4.3) 

and F i k  = - M2k2k!2k- B2k2k{Zk- Mzk1j11j-B2kljtlj, (4.4) 

where Mijpk and Biipk (i, p = 1,2)  are generalized added-mass and damping coefficients, 
as defined in (A 17). Furthermore, from (A 14), (A 19) and (A 20) 

F:j = Re{pgAA$eimt), (4.5) 
- 

Bijpk = B p W [ A & A $ k + z T / f G k ]  = ~ p p W [ A & A ~ k + A ~ A ~ k ] .  (4.6a, b )  

It follows from (4.1)-(4.5) and (2.6) that 

(21j1j+dl) E l j  = ( i w ) - l ~ g A A ~ - Z l j Z k ~ Z k ,  (4.7) 

(Z2k2k + d Z )  &;2k = (iw)-lpgAA,Sk - Zlj2k$lj, (4.8) 
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where Zijij = Bijij + iw(mi + M.. 2323 . .) - iw-lk, (i = 1 ,  2 ) ,  (4.9) 

‘ l jZk = Blj2k + iWMljZk* (4.10) 

Use has been made of the symmetry relations ( A  18). 
For E to be equal to 1 we require tlj and ,i& to satisfy (3.6) and (3.7) respectively. 

We therefore substitute these values into (4.7) and (4.8) to find the values of di and 
ki (i = 1 , 2 )  which give maximum power absorption. Thus we have 

after use of (4.6). Hence, equating real and imaginary parts, we obtain 
- -  

k1 = W 2 ( m 1  + M i j l j )  - w Im {(iwMljZk - Bl j2k )  Ac/A2k), (4.11) 

Similarly we obtain 

ICZ = W2(m2 + M2k2k) - ” Im {(iwMlj2k - BlfZk) &k/A?}, 

dZ = B2k2k + Re {(i@MljZk - B1j2k) 

These values of di and ki (i = 1,2)  give E = 1 at the frequency w. 

pynamic forces, the efficiency E can be written 

(4.13) 

(4.14) 

Notice that, in terms of the mean work being done on the cylinders by the hydro- 

using (4.1) and (2.6). On substitution of the values of tlj, &k, d,  and d ,  given by (3.6), 
(3.7), (4.12) and (4.14) we obtain E = 1, in agreement with our previous derivation in 
$ 3 .  The details of this calculation may be found in appendix B. 

As noted earlier, if we drop the subscripts 1 and 2, this result can be applied to a 
single body in two modes. In particular, for a circular cylinder we have from symmetry 
Mjk = 0 and Bjk = 0 (j + k )  for j = 1 (heave) and k = 2 (sway). Hence from (4.1 1)- 
(4.14) we obtain the same conditions on di and ki to achieve E = 1 as in Evans [1976, 
equation (8.6)].  

Note that the quantities Mijpk, Bijpk and A$ are all frequency dependent. Thus to 
achieve Em,, = 1 at w = wo we require the values of di and ki given by (4.1 1)-(4.14) to 
be satisfied at w = wo. If these values of di and ki for w = wo are substituted into (4.15) 
we obtain E = E(w, wo),  a function of w and wo, and in particular E(w,, wo) = 1. The 
system is then said to be ‘tuned’ to w = wo, so that E attains its maximum a t  w = w,,. 
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FIGURE 1. Configuration of two cylinders for wide-spacing approximation. 

It is of both theoretical and practical interest to study the variation of E(w,  wo) with 
w ,  and to do this we substitute glj and kZk from (4.7) and (4.8) into (4.15) to obtain 

E(w,  O O )  = 2Pw I (zljlj + dl) (Z2k2k + d Z )  - 2?jZk(-2 {dZ I ('ljlj + - ZljZkA&12 

+ dl I(Z2kZk + d 2 )  A&-ZljZkA2+k12}? (4-16) 

where d ,  and ki are given by (4.11)-(4.14) with w = wo. 
Clearly (4.16) gives E as a complicated function of w and wo and does not yield much 

information on the variation of E with w .  It is necessary therefore to solve the radiation 
problem for a particular configuration of two bodies and then to use the values of 
Mijpk(w), &jpk(W) and A&(w) given by that solution to see how E varies with w in that 
particular case. 

Few exact solutions are known to the authors for the radiation problem of one body 
in the presence of another. Those that are known deal with symmetrically placed bodies 
moving in unison: a catamaran-type configuration (e.g. Wang & Wahab 1971; Wang 
1970). For the radiation problem involving one body fixed and one moving, these 
solutions are of no use in determining added-mass and damping coefficients or the 
amplitude of waves at  infinity. Therefore, in the remainder of this paper, a good 
approximate method is developed in which the solution of the two-body problem is 
found in terms of the solutions to the scattering and radiation problems for a single 
body. The particular case of two surface-piercing, vertical, thin barriers is studied in 
detail and the variation of E(w, w0) with w considered. 

5. Wide-spacing approximation 
In  this section approximate solutions to the radiation and scattering problems are 

derived on the basis of the assumption that the distance between the two cylinders is 
large compared with the wavelength. This assumption enables us to neglect the inter- 
action due to local effects, which decay with distance from each cylinder, and to 
assume that the only interaction that takes place is due to the travelling waves which 
pass between the two cylinders. This type of approximation has been used by other 
authors (Newman 1977; Ohkusu 1974) to examine similar problems. Under the wide- 
spacing assumption the solution in the neightourhood of each cylinder can be written 
as a combination of the solutions to the scattering and radiation problems for that 
cylinder in the absence of the other. 

We define time-independent potentials $ij(z, y) and e*(z, y) to be the solutions of 
the radiation (in the j t h  mode) and scattering problems for the ith cylinder in the 
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absence of the other cylinder. In  each case (i = 1 , 2 )  the cylinder is taken to be situated 
at the origin. The f sign in +& denotes waves incident from x = -t 00 in the scattering 
problem. Then $& and $& satisfy Laplace’s equation in the fluid, the free-surface 
condition, together with the normalized conditions 

a$’q*lan, = 0 on Si ( i  = i , 2 ) ,  (5.1) 

8 g j / a n ,  = ntj on S, (i  = i , 2 ;  j = 1 , 2 , 3 ) .  (5 .2 )  

gj - a&eriKzfKy as x -+ & co (i = 1 , 2 ;  j = 1 , 2 , 3 ) ,  (5 .3 )  

Also, we assume that 

With these solutions to the single-body problems we are now able to study the 
radiation and scattering problems for two bodies as formulated in 5 2.  We assume that 
the first cylinder is a distance b from the origin along the + x axis and that the second 
cylinder is a distance b‘ from the origin along the - x axis (b ,  b’ =- 0 ;  see figure 1). Wide 
spacing implies that b + b’ B A = 27rK-l. First we consider the radiation problems and 
then the scattering problem. 

5.1. T h e  radiation problem for 41j 
Here we consider the cylinder at x = - b’ to be fixed, with no incident wave, and the 
cylinder at x = b to be moving in thejth mode. Near the cylinder at x = b we may write 

4lj = $; j (X  - b, Y )  +%@-(x- b, Y ) ,  (5.6) 

4lj = %$G+(X+b’,Y), (5.7) 

and near the cylinder at x = - b‘ we may write 

where el and q1 are unknown, complex constants. We have x - b and x + b‘ in (5.6) and 
(5.7), rather than 2, since the cylinders are not situated a t  the origin, whereas the 
solutions for a single cylinder refer to the origin. Note that the first term on the right- 
hand side of (5.6) is that part of the solution due to the movement of the cylinder a t  
x = b in the absence of the cylinder a t  T = - b’. The second term represents the inter- 
action due to the scattering by the cylinder at x = b of the wave (of unknown potential 
amplitude el) which is reflected back from the cylinder at x = - b’. In ( 5 . 7 )  the right- 
hand side represents the wave (of unknown potential amplitude q I )  scattered by the 
cylinder at x = -b’. 

To determine el and ql we assume that there exists a region between the cylinders 
where the asymptotic forms (5 .3) - (5 .5)  apply. If we substitute these forms into (5 .6 )  
and (5.7) and equate like exponentials, we obtain 

el = aGr,+{exp [ 2 i K ( b  + b’) ]  - r,+r-}-l, 

ql = ai> exp [iK(b + b’)] {exp [ 2 i K ( b  + b‘)] - rZ+rl-}-l. 

(5 .8 )  

(5.9) 
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A& = a& exp (iKb) + el tl- exp (iKb),  

A; = qlt2+exp (iHb‘). 
From (A 17) we know that 

0 ~ ~ _ 2 M j 1 j - i ~ B 1 j ~ j  = - 
which gives, after use of (5.1), (5.2) and (5.6), 

(5.10) 

(5.11) 

where m$) and b$) are the added-mass and damping coefficients for the cylinder at b in 
isolation. By use of Green’s theorem (A 5) it is possible to show that 

lS, $i-(s - b,  y) - dl = - iaG, an 
so that from (5.12) 

5.2. Radiation problem for q52k 

The analysis proceeds as for &.. Near the cylinder at x = b 

$2k = q2$!-(2-bb,y), 
and near the cylinder at x = - b’ 

(5.14) 

$2k = $gk(X+b’ ,Y)  +“afi+(”+b’,y),  (5.15) 

where e2 and qz are complex constants. Matching, as in 0 5.1, gives 

c2 = a&r,-(exp [2iK(b + b‘)] - r2+rl-}-1, 

q2 = a& exp [iK(b + b’)] (exp [2iK(b + b‘)] - ~ ~ + r ~ - ) - ~ .  

(5.16) 

(5.17) 

Hence, from (2.10), (5.14) and (5.15), we obtain 

A& = q2tl-exp (iKb), (5.18) 

AFk = agk exp (iKb’) + e2t2+ exp (iKb’), (5.19) 

u2M2k2k - iWB2kpk = U2m!$d - hbk? + ‘@iIk2a$j, (5.20) 

where mk? and bi? are the added-mass and damping coefficients for the cylinder at 
- b’ in isolation. 

With the above information it is possible to calculate M1j2k, Blj2k, M&j and B2klj. 
From (A 17) 

W2Mlj2k-iwBlj2k = -Pu2/ # 2 k x  a#ljdl * 

w2M1j2k-iuB1/2k = -PO2/ ? ) 2 @ - ( X - b ~ y ) x d 1  w j  

s1 

w e  substitute for qblj from (5.6) and for #2k from (5.14) to obtain 

s1 
= ipo2q2a~,  (5.21) 
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on using Green’s theorem. Similarly 

W2M& - iWBZklj  = iPW2I)l  a&. (5.22) 

Note that (5.21) and (5.22) together with (5.9) and (5.17) check with result (A 18). 

5.3. Scattering problem for 
In  this case both cylinders are held fixed and a wave is incident upon them from 
x = + CCI. As above we find, near the cylinder at x = b 

$8 = exP W b )  %4+@ - b, ?A + €3 %4-@ - b, Y), (5.23) 

and near the cylinder at x = - b’ 

4 s  = r 3 l 4 + ( Z + b ’ , Y ) ,  (5.24) 

where e3 and v3 are complex constants. Note that the factor exp (iKb) is necessary in 
the first term on the right-hand side of (5.23) to give the right behaviour for the incident 
wave as x -+ +a, consistent with (2.8). Again by matching (5.23) to (6.24) we obtain 

(5.25) 

(5.26) 

e3 = t,+r,+ exp (iKb) {exp [2iK(b + b’)] -rz+rz-}-l, 

vS = t,, exp [iK(2b + b’)] {exp [2iK(b + b‘)] - Y%+T=-} -~ .  

From (2.8), (2.9), (5.23) and (5.24) we obtain 

R = rl+ exp ( 2 2 3 )  + e3 tl- exp (iKb) 

T = rat2+ exp (iKb’). 
(6.27) 

(5.28) 

We have now derived an approximate solution to the two-cylinder problem in terms 
of solutions to the single-cylinder problems. There are many numerical solutions to the 
radiation and scattering problems involving single cylinders of different cross-sections. 
I n  contrast there are a limited number of analytic solutions. Perhaps the best known 
of these are the exact solutions derived by Ursell (1947, 1948) for a thin, partly 
immersed, vertical barrier. In  the next section we exploit these solutions to consider 
wave absorption by two such thin, vertical, rolling barriers. 

It would be of interest to check whether our approximate solutions for the damping 
coefficients Bi,pk and for A&, R and T satisfy (A 7), (A 19) and (A 20). This, however, is 
a difficult exercise as a&, Ti* ,  ti* and b&) themselves satisfy similar relations (given 
below). This means that it is not obvious how to use these relations to simplify the 
expressions derived for the two-cylinder case. However (A 7),  (A 19) and (A 20) have 
been verified numerically for the special case considered in the next section. 

Note that from Newman [1975, equation (13); 1976, equations (31a), (38)-(42)] we 
know that for i = 1, 2 a n d j  = 1 ,2 ,3  

- - 
azri++aGti++a& = 0, 

aGri-+a&ti-+aG = 0, 

Iti*l2 = 0, ti+ri-+ti-ri+ = 0, 

ti+ = ti-, ITi+[ = IT i - / ,  

- - 

- -  

arg (Ti+) + arg (r id)  = 7~ + 2 arg (t i+),  
- - 

by2 = bpU(a&a$+aGa$} = & p W ( G a & + + a $ } .  
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FIGURE 2. Configuration of two thin vertical barriers acting as wave-power absorbers. 

6. Wave-energy absorption by two rolling vertical barriers 
In  this section we consider the special case of two identical rolling vertical thin 

barriers a distance 2b apart, positioned symmetrically with respect to the origin and 
each immersed to a depth a. The barriers can roll about a point a distance c along their 
length in response to the incident wave, the energy being absorbed through a linear 
spring-damper system attached to each barrier. The configuration is shown in figure 2. 

Results for the efficiency of a single barrier rolling about a point in the free surface 
have been given by Evans (1976), where the maximum efficiency was shown to be 
50 yo. As in that paper we exploit the known explicit solutions derived by Ursell for the 
velocity potential associated with the scattering of a given incident wave from a single 
thin vertical barrier (1947) and also for the waves produced by the rolling of such a 
barrier (1948). Thus, in the notation of 9 5 ,  for i = 1,2,  

a& = -az ,  (6.1) 

(6.2) 

(6.3) 

(6.41, (6.5) 

where Kl and ll are modified Bessel functions and Ll a modified Struve function, all 
with argument Ka. 

The added-mass and damping coefficients for a single rolling vertical plate have 
recently been derived explicitly from Ursell's theory (1948) by Mei (1976). Thus for 
i = 1, 2, we have from Mei (1976), after correction of a typographical error, 

la$l/a2 = ~ ( K U ) - '  (n212,+K;)-8 18- ( K ~ ) - l ( i  - K C )  (.Zl+Ll)l, 

arg (a&) = tan-1 (K1/nIl) + &r, 

,ri& = nIJ(nI1- X I ) ,  ti& = - iK1/(nIl - iKl), 

b.$/(&npoa4) = 4 n ( K ~ ) - ~  ( ~ ~ 1 ;  + K;)-l[& - (Ka)-l (1 - KC)  (Il + L1)I2 (6.6) 

PL$)/ (&?T~u~)  = 4 ( K ~ ) - ~ I i l  K1(n2I2,+K2,)-l [&Ka-( l -Kc)  (II+L1)I2 ( 
- @2%)310 + Ka[( 1 - Kc) L, - Ka] [IIL, - IOL1] (1 - Kc) 

- 2n411(1 - K c ) ~ j o K u ~ L l ( z ) d z  

+ (Kay  Il[Q + Q+( 1 - Kc) Ka + &(Ka)2]], (6.7) 

where K,, Il and Ll are as in (6.2) and I, and Lo are modified Bessel and Struve functions 
respectively, with argument Ka. 
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Ka 

FIGURE 3. Comparison of results for (RI with Evans & Morris. (a) b/a = 1. (b) b/a = 3. 
+ , results taken from Evans & Morris; -, present results. 

The results (6.1)-(6.7) provide all the information we require in order to predict the 
efficiency of a system of two independently rolling thin vertical plates as a wave-power 
absorber. All that is required is to substitute (6.1)-(6.7) into the general expression for 
the efficiency given by (4.16). The amount of computation involved is reduced con- 
siderably by exploiting the symmetry of the two-barrier system. Thus 

A& = -A&? B1313 = B2323, M1313 = M2323, (6.8) 

and from (A 18) B1323 = B2312? M1323 = M2313* (6.9) 

7. Results and discussion 
As a check on the accuracy of the wide-spacing approximation of 5 5 a comparison 

was made with the results of Evans & Morris (1972) for the scattering of surface waves 
by two vertical barriers. They made use of two different variational approximations 
to find the reflexion coefficient R. Their approximations were found to be good pro- 
vided that the spacing between the two barriers was not too small. They gave curves 
of IR] against Ka for b / u  = 1,3  and we have computed lRJ for the same values of b/a 
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FIGURE 4. Non-dimensional potential amplitudes a t  z = & Q) for one barrier rolling in the presence 
of another ( b / o  = 1, c / o  = 0). ---, IA&../a2, potential amplitude at x = +a; ---, (A,I/ae, 
potential amplitude at x = -a; x , la&l/a2, non-dimensional potential amplitudes at z = & co 
for a single rolling barrier ( c / o  = 0). 
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FIQURE 5. Non-dimensional damping coefficient for one barrier rolling in the presence of another 
(b/a = 1, c/o = 0) .  -, Bl3,,/(&rpoca4); ---, 6:','/(&rpwa4), non-dimensional damping coefficient 
for a single rolling barrier (c /a  = 0). 

(see figure 3). As can be seen from figure 3 ( b ) ,  for b/a = 3, no distinction can be made 
between the values of IRI given by the wide-spacing approximation and those given 
by Evans &Morris. From figure 3 (a)  it is clear that, although the wide-spacing approxi- 
mation deviates slightly from the results of Evans & Morris, it is still good. If we 
consider, for example, the value of IRI at Ka = 0.6 we find that it agrees closely with 
the value given by Evans & Morris. Since this corresponds to the wavelength A being 
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FIUURE 7. Non-dimensional added-mass coefficient for one barrier rolling in the presence of 
another (b/a = 1, c / a  = 0). -, Ml,,,/($7rpa4); ---, m!3(&7rp4) ,  non-dimensional added-mass 
coefficient for a single rolling barrier (./a = 0). 

five times the barrier spacing, it is clear that the approximation can be good when the 
initial assumption of wide barrier spacing ( A  < 2b) is not valid. In  order to guarantee 
the accuracy of the method we shall restrict the computations to b / a  2 1. 

As noted previously, it  was not possible to show that the approximate results of 
Q 5 (for R, T, Aij and Bijpk) satisfied (A 7) and (A 19), owing to the complexity of the 
algebra involved. However by using the computed values of these quantities it was 
possible to check out these relations for a range of values of the parameters Ka, b / a  

Wave-power absorption by two independently oscillating bodies 

FIGURE 6. Non-dimensional damping coefficient for one barrier arising from the 
rolling motion at the second barrier @/a = 1, c /a  = 0 ) .  
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FIGURE 8. Non -dimensional added-mass coefficient for one barrier arising 
from the rolling motion of the second barrier (b/a = 1, c/a = 0). 

Ka 
FIGURE 9a. For description see opposite. 

and cla. As these relations are satisfied by the numerical results this shows that both 
the approximation used and the numerical results are consistent with the general 
theory presented earlier. 

Before proceeding to consider the efficiency E of the system as a wave-power 
absorber we briefly consider the results for A&, B1313, M1323 and B1323 given in 
figures 4-8 in non-dimensional form. For comparison, the non-dimensional values of 
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FIUURE 9. Efficiency E vs. non-dimensional wavenumber Ka for 

b / a  = 1 and (a) K,a = 0.6, (b )  K,a = 0.8, (c) K,o = 1.2. 
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1 

E C  

Ka 
FIUURE 10. Efficiency E v8. non-dimensional wavenumber Ka for b/a = 3 

and (a) K,a = 0.5, (b )  Koa 0.8, (c) Koa = 1.2. 

the added-inertia and damping coefficients and the potential amplitude for a single 
barrier are shown in figures 7, 5 and 4 respectively. 

It is interesting to note that there exists a discrete set of characteristic frequencies 
at which the motion of the fluid between the two plates is strongly excited by the 
oscillations of one plate with the other held fixed. These characteristic frequencies are 
given approximately by the equation 

2Kb = ~n (q == 1,2,  ...), (7.1) 

which relates to the natural modes of motion of the fluid between two vertical plates 
extending to y = - 03 and a distance 2b apart with no energy dissipation. In the case 
we are considering, as the plates are finite there is always a leakage of energy under the 
plates, which is then transmitted to infinity. Consequently peak resonant frequencies 
are not exactly coincident with those specified by (7.1). Similar resonances were found 
to occur owing to the oscillations of twin circular cylinders in the free surface, by Wang 
& Wahab (1971). Newman (1977) found resonant effects in a similar three-dimensional 
problem. 

For the results in the particular case b/a = 1, c/a = 0 (shown in figures 4--8), (7.1) 
gives Ka = &r (for q = 1) as the first value of Ka near which resonance occurs. This is 
clearly confirmed by the results given in figures 4-8. For q 2 2 the resonant effects are 
outside the range of Ka considered. Calculations (not shown) were carried out for the 
case b/a = 3, c/a = 0 with Ka ranging from 0 to 2.5. As expected, resonances were 
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again found near the values of Ka ( = Qn, +r, &r, Qn) predicted by (7.1). These resonant 
effects have a crucial effect on the efficiency E of the system and a more detailed 
discussion of them is given by Wang & Wahab (1971). 

Curves of the efficiency of wave absorption E for the two barriers are shown in 
figures 9 and 10. The inertia of the two thin barriers will be negligible compared with 
the added inertia due to the fluid, so we put mi = 0 (i = 1,2)  in the expression (4.16) 
for E. The two-barrier system was tuned to different wave frequencies by choosing the 
spring and damper constants accordingly. Computations of E were made for barrier 
spacing ratios b/a = 1, 3, points of rotation cla = 0, 0-6, 1, non-dimensional tuned 
wavenumbers K,a = 0.5, 0.8, 1.2 and non-dimensional wavenumbers Ka ranging 
from 0 to 2-5. 

In  figure 9 (a) the efficiency E of the two plates is plotted against Ka for the case in 
which the system is tuned to give Em,, = 1 at K,a = 0.5. From the curves it can be 
seen that E is greater than Q for a significant range of values of Ka, thus improving on 
the single-barrier results given in Evans (1976). By varying the depth c of the point of 
rotation it is possible to widen the range of Ka for which E > 4. Values of E (not shown) 
for c/a = 0-2,0.4 and 0.8 were also computed, but no significant improvement in E was 
found; in fact, in general the values of E for these values of c/a were lower than the 
ones shown in figure 9 (a) .  However for all values of c /a  a sharp decrease in the value of 
E was found in the neighbourhood of Ka = 1.3. This decrease could not be eliminated 
by varying the value of cla. 

In  figures 9 ( b )  and ( c )  we have plotted E against Ka for Koa = 0.8 and 1.2 respec- 
tively. In both cases the range of Ka for which E > Q is wider than that for the case 
K,a = 0.5. As in figure 9 (a) ,  curves are shown only for those values of cla which give 
the highest efficiencies. Again it is important to note that, for both K,a = 0.8 and 
K,a = 1.2, E decreases to very low values in the neighbourhood of Ka = 1.5. 

The sudden decreases in the value of E occur in all cases and are due to the resonances 
present in the values of the potential amplitude and added-inertia and damping 
coefficients. Thus in (4.11)-(4.14) values of di and Li (i = 1,2)  were chosen such that E 
attained its maximum at a given frequency wo. These tuned values of di and ki (i = 1,2)  
depend on the values of the potential amplitudes and added-inertia and damping 
coefficients a t  w = wo. These hydrodynamic coefficients vary most rapidly with w near 
resonance. Since E ,  given by (4.16), depends on these coefficients, we should expect the 
greatest decrease in the efficiency E in the neighbourhood of the resonant frequencies. 
By comparing the values of Ka for which resonance occurs (figures 4- 8) with the values 
at Ka for which E is small (figure 9), we see that this is increasingly true as K,a 
approaches Ka. Thus the possibility of resonant interactions between the barriers and 
the fluid clearly has a detrimental effect on the efficiency of the system. 

A similar effect is evident in the values of the efficiency E ,  plotted against Ka, for 
b/a = 3 (figure 10). Here the tuned non-dimensional wavenumbers are K,a = 0-5, 0-8 
and 1.2 in figures 10 (a) ,  {b)  and ( c )  respectively. Again we find sudden decreases in the 
efficiency E near the values of Ka (=  &n, in, in, +n) given by (7.1), close to which 
resonances occur. As the number of these resonances is greater for b,/a = 3 than for 
b/a = 1 in the range of Ka considered (Ka = 0-2.5), so is the number of sudden 
decreases in E. This suggests that barriers closer together are more efficient as wave- 
power absorbers. 

The results for E shown in figure lO(a) are particularly poor, with E < 0.15 for 
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practically all values of Ku considered. This is because K,a = 0.5, and the system is 
tuned to give Em,, = 1 in the neighbourhood of the first resonance, near Ka = Qn. 
In  figures 10(b )  and (c) ,  K,a = 0.8 and 1.2 respectively so the system is not tuned to 
(or near) a resonant frequency. This results in a considerable improvement in the 
efficiency of the system. As in the case b/a = 1, the values of E can be improved by 
varying c./u. However it is not possible to eliminate the low values of E which occur 
owing to resonant effects. 

8. Conclusion 
A theory has been developed for predicting the efficiency of energy absorption of 

two independently oscillating cylinders. The efficiency was shown to depend upon 
generalized added-mass and damping coefficients as well as radiated potential ampli- 
tudes. A simple approximate method for deriving these hydrodynamic coefficients 
from knowledge of corresponding coefficients for a single cylinder was presented, based 
on the assumption that the cylinders were widely spaced. A check on the results 
suggested that the theory could also be used when this assumption was not satisfied. 

The results show that it is possible to absorb all the energy in a given incident wave a t  
a given frequency w = w, when the system is tuned to that frequency. They also show 
that, away from the tuned frequency w,, the efficiency of the system will be low in the 
neighbourhood of values of w for which resonance occurs. Clearly from these results 
(and those of Wang & Wahab 1971) we can expect similar effects to occur whenever 
two long cylinders, of arbitrary cross-section, lying in parallel in the free surface are 
used to absorb energy from the incident wave. This will be so because of the possibility 
of resonant interaction between the two cylinders and the fluid whenever both the 
cylinders intersect the free surface. It is possible to eliminate resonant effects from the 
range of values of Ka in which we are interested by placing the barriers closer together. 
For example if we are interested in A, < h < A, ( A  = 27i-K l),  we can choose 2b < $Ao, 
which will ensure that no resonances occur in the range A, < h < A,. Another possible 
way of reducing resonance effects is to submerge one or both of the cylinders. This last 
possibility is suggested by the results of Wang (1970) on the oscillations of twin- 
hulled submerged cylinders, where it is shown that the more deeply submerged the two 
cylinders are the less pronounced are the resonant peaks in the hydrodynamic 
coefficients. 

Detailed calculations have been made for a pair of vertical rolling plates. Such a 
configuration is attractive mathematically since the hydrodynamic coefficients for a 
single plate are known in closed form, whereas for any other shape only numerical 
results are available. It is not anticipated that the results would be markedly changed 
for bodies of different shapes; the drop in efficiency due to resonant effects would still 
occur but at  slightly different values of Ku. The inertia of a ‘full’ body would narrow 
the efficiency curves but would have no effect on the peak efficiencies, whereas the 
built-in buoyancy of such a body would prevent tuning in heave at low frequencies. 
Both these effects are described by Evans (1976) for the case of a single body. 

It is of interest to note that a system of vertical plates has been suggested recently as 
a possible practical wave-power machine by Parley, Parks & Altmann (1978). 

The present theory deals only with two-dimensional cylinders whereas any practical 
wave-energy device is necessarily three-dimensional. However it is hoped to extend 
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the present ideas to cover systems of three-dimensional bodies, where it is anticipated 
that resonant effects will be less important. 

The work of one of us (M. A. Srokosz) was carried out with the support of a grant 
from the Science Research Council. 

Appendix A. Derivation of special relations for a system of N bodies 
situated on or beneath the free surface 

In this section we extend the theory of 5 2 to the case of N cylinders, each assumed 
to be long, with horizontal generators lying parallel to the generators of the other 
cylinders. The fluid motion is again taken to be two-dimensional. We use the notation 
of $ 2  for the scattering and radiation problems, but now for &, i ranges over the 
values 1 to N ,  rather than 1 and 2. 

Green's theorem 

Let q5 and $ be two complex-valued time-independent potentiah such that Re {q5 e"t) 
and Re{$eeiwt} satisfy (2.1) and (2.2), and 

aq5lan = a$/an = 0 on Si (i = 1, ..., N ) ,  (A 1) 

where S, is the wetted surface of the ith body, 

where Ai and B, are constants (i = 1,2 ,3 ,4) ,  and 

V$,V$+ 0 as y +  -03. (A 4) 

By Green's theorem we know that, for any sufficiently smooth harmonic functions 

where c! is the contour consisting of the free surface, the body surfaces Si, the fluid 
bottom (at y = - co) and two vertical closures at  x = f X, where X > 0. As q5 and $ 
satisfy the free-surface condition, (A 1) and (A 4), the only contributions to the integral 
come from the vertical closures at  x: = & X. Hence using (A 2) and (A 3) gives, as X + 03, 

- A ,  B, + A2B1 + A ,  B4 - A ,  B, = 0. (A 6) 

Extension of the Newman relations to N bodies 

If we take q5 = & - & and $ = q5s then the conditions for (A 6) to hold are satisfied 
since 
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since nkj is real. Now we have 
- - 

A , = A & ,  A , = - A +  237 A 3 - -AT - 259 A 4 - A -  - tj9 

B, = R ,  B,  = 1, B3 = 0, B, = T ,  
so that (A 6) gives 

which extends the Newman (1975) relations to the case of one body oscillating in a 
given mode in the presence of N - 1 fixed bodies. 

A +R+AiT+At l  ij -I- - - 0 (i = 1,2;  j = 1,2,3),  (A 7) 

Note that with $ as above and $ = $pk - g p k  we find similarly that 

AiS;A,f,-A,+,A,+,+AijA~k-Ai,A,-, = 0 ( i , p  = 1,2,  ..., N ;  j, k = 1,2,3),  (A8) 

or I m { A & A i + A z A i )  = 0. 

Extension of the Huskind relations to N $xed bodies 

The force on the ith body in the j t h  direction due to an incident wav0 of amplitude A 
is Ffj, and is given by 

F& = - j-sP&jdl, (A 9) 

where p8 = Re { - ipgA$seiut} and $s is written as 

( g A / w )  $8 = $I + $D (A 10) 

where is the incident wave and $D the diffracted wave. Thus 

$I = gAo-leiKx+KV, 

$D N A$, eriKx+KV as x + 00. (A 11) 

Thus, from (A 9), (A 10) and (2.7), we obtain 

From (A 5 )  we know that I($ij ,  $D) = 0; in this case the only contributions to I come 
from the body surfaces s k ,  so that 

5 1 ($ij - $D a$ i j /an)  dl = 
k = l  sk 

Also, from (A 10) and (2.7),  

a $ , / h  = - @,/an on S, (k  = 1, . . ., N )  

and ? $ i j / h  = 0 On 8, ( k  $; i). 

Hence, after some manipulation, we may write (A 12) as 

Equation (A 5 )  now gives I(&, $<j) = 0 so (A 13) becomes 

F:j = Re 1 - iwp eiutJg (h a $ i j / h  - $i, dZ] , 
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where S’ consists of the vertical closures at x = & X .  Hence, on using (A 11) and (2.10), 
we obtain, &s X + 03, 

an extension of Haskind’s relations to the case of N bodies (Newman 1976). 

Ftj = Re{pgA A$eiwt}, (A 14) 

Generalized added-mass and damping coeficients 

Generalizing (2 .6)  gives N 3  

$ = gAw-’$8+ c 2 iw<pk$pk 
p = l  k = l  

as the potential for the motion of N bodies in response to an incident wave of amplitude 
A .  The previous subsection considered the forces due to a wave incident on the fixed 
bodies. In this subsection the forces on the ith body in thej th  direction due to the 
motion of all N bodies is considered. F&, the force on the ith body in thejth direction, 
is given by n 

where cpk(t) is given by (2.6) and 

w2Mijpk-iwBijpk = -Pw”/ # p k x  %dl. (A 17) 
Sd 

Here we define N j p k  and Bijpk (real) to be generalized added-mass and damping 
coefficients. If the subscripts i and p are dropped in (A 17) we have the definition of 
added mass and damping for a single body [cf. Wehausen 1971, equation (23)]. Another 
application of Green’s theorem (A 5 )  now gives 

W 2 M i j p k -  iOBijppk =i OJ2Mpkij - iOJBPk.j. 

Hence, equating real and imaginary parts, we obtain 

Mijpk  = Mpkij, Bi jpk = Bpkij .  (A 18) 

In  (A 16) the term - M,jpk<ppk gives the force on the ith body in the j t h  direction due 
to (and in phase with the acceleration of) the motion of the pth body in the kth mode. 
Similarly - Bijpk t p k  gives the force in phase with the velocity of the pth body in the 
kth mode. 

A relation between energy radiation and the damping coeficient 

From (A 5 ) ,  it can be seen that 

I($4j, $ p k )  = I($ij, $ p k )  = O* 

Therefore, using (2.2), (2.7), (2.10) and (A 17), we obtain 
- 

i [ a A &  + A; A;;k] - (pW2)-l [fd’Mpkij + iOBpkij - w2i&jpk -k iwBtjpk] = 0, 
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which, on use of (A 18), gives 

Bijpk = $pw[zjAzk+&jApk]. (A 19) 

Furthermore, it can be seen that 

Biipk = Bpkij = ipo[A$ATk+A,ATk], (A 20) 

which together with ( A l 9 )  confirms (As).  These results may be compared with 
Newman [1962, equation (38); 1976, equation (31)]; in fact if we drop the subscripts 
i and p we obtain results identical with his. 
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